Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.726
Filtrar
1.
J Ethnopharmacol ; 328: 118052, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38518967

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Cholic acid (CA) is one of the main active ingredients in Calculus Bovis, a traditional Chinese medicine, which helps to regulate the heart and liver meridians, clearing the heart, opening the mouth, cooling the liver and calming the wind. However, the molecular mechanism of its liver protective effect is still unclear. AIM OF THE STUDY: Growing attention has been directed towards traditional Chinese medicine (TCM), particularly Calculus Bovis, as a potential solution for liver protection. Despite this interest, a comprehensive understanding of its hepatoprotective mechanisms remains lacking. This research seeks to explore the potential protective properties of cholic acid (CA) against CCl4-induced acute liver injury (ALI) in mice, while also examining the mechanisms involved. MATERIALS AND METHODS: In the experiment, a mouse model was employed to ALI using CCl4, and the potential therapeutic effects of orally administered CA at varying doses (15, 30, and 60 mg/kg) were assessed. The study employed a multi-faceted approach, integrating liver transcriptomics with serum metabolomics, and conducting thorough analyses of serum biochemical markers and liver histopathological sections. RESULTS: Oral CA administration markedly reduced the organ indices of the liver, spleen, and thymus in comparison with the model group. It also elevated the expression of superoxide dismutase (SOD) in serum while diminishing the concentrations of ALT, AST, MDA, IL-6, and TNF-α. Moreover, CA ameliorated the pathological damage induced by CCl4. Integrated metabolomic and transcriptomic analyses indicated that the hepatoprotective action of CA on ALI is mediated through the modulation of lipid metabolic pathways-specifically, metabolisms of glycerophospholipid, arachidonic acid, as well as linoleic acid-and by altering the expression of genes such as Ptgr1, PLpp1, Tbxas1, and Cyp2c37. CONCLUSIONS: The current investigation offers insights into the hepatoprotective mechanisms by which CA mitigates ALI caused by CCl4 exposure, thus supporting the further evaluation and development of CA-based therapeutics for ALI.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Transcriptoma , Camundongos , Animais , Tetracloreto de Carbono/farmacologia , Fígado , Extratos Vegetais/farmacologia , Perfilação da Expressão Gênica , Doença Hepática Induzida por Substâncias e Drogas/patologia
2.
Int Immunopharmacol ; 131: 111861, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38484665

RESUMO

Glutathione (GSH) depletion, mitochondrial damage, and oxidative stress have been implicated in the pathogenesis of acetaminophen (APAP) hepatotoxicity. Here, we demonstrated that the expression of histone deacetylase 6 (HDAC6) is highly elevated, whereas malate dehydrogenase 1 (MDH1) is downregulated in liver tissues and AML-12 cells induced by APAP. The therapeutic benefits of LT-630, a novel HDAC6 inhibitor on APAP-induced liver injury, were also substantiated. On this basis, we demonstrated that LT-630 improved the protein expression and acetylation level of MDH1. Furthermore, after overexpression of MDH1, an upregulated NADPH/NADP+ ratio and GSH level and decreased cell apoptosis were observed in APAP-stimulated AML-12 cells. Importantly, MDH1 siRNA clearly reversed the protection of LT-630 on APAP-stimulated AML-12 cells. In conclusion, LT-630 could ameliorate liver injury by modulating MDH1-mediated oxidative stress induced by APAP.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Doença Hepática Induzida por Substâncias e Drogas , Desacetilase 6 de Histona , Leucemia Mieloide Aguda , Animais , Humanos , Camundongos , Acetaminofen , Doença Hepática Induzida por Substâncias e Drogas/patologia , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Glutationa/metabolismo , Desacetilase 6 de Histona/antagonistas & inibidores , Leucemia Mieloide Aguda/metabolismo , Fígado/patologia , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos
3.
Zhonghua Gan Zang Bing Za Zhi ; 32(2): 133-139, 2024 Feb 20.
Artigo em Chinês | MEDLINE | ID: mdl-38514262

RESUMO

Objective: To explore the association between aldehyde dehydrogenase 2 (ALDH2) gene polymorphisms and abnormal liver function-induced by acetaminophen (APAP) drugs. Methods: An ALDH2 gene knockout mouse model was constructed using CRISPR/Cas9 gene editing technology. The obtained heterozygous mice were mated with opposite sex of heterozygotes. Genomic DNA was extracted from the tail of the offspring mouse. The polymerase chain reaction (PCR) method was used to determine the ALDH2 genotype. APAP was further used to induce acute drug-induced liver injury models in wild-type and ALDH2 knockout mice. Blood and liver tissues of mice were collected for liver function index, HE staining, F4/80 immunohistochemistry, and other detections. The intergroup mean was compared using a one-way ANOVA. The LSD- t test was used for pairwise comparison. Results: ALDH2 knockout mice were bred successfully. The genotyping of the offspring was segregated into the wild-type (ALDH2(+/+)), heterozygous mutant (ALDH2(+/-)), and homozygous mutant (ALDH2(-/-)), respectively. Biochemical and histological results after APAP modeling showed that the level of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and total bilirubin (TBil) was not significantly increased in the blank control group (P < 0.05), while the ALT, AST,ALP, and TBil were all elevated in the APAP experimental group. The levels of ALT (P  = 0.004), AST (P = 0.002), and TBil (P = 0.012) were significantly elevated among the mutant group compared to those in the wild-type group, and the expression levels of these indicators were also significantly elevated among the homozygous mutant group compared to those in the heterozygous mutant group (P = 0.003, 0 and 0.006). In addition, the ALP levels were higher in the heterozygous mutation group than those in the homozygous mutant group (P = 0.085) and wild-type group mice, but the difference was only statistically significant compared to wild-type mice (P = 0.002). HE staining results showed that mice in the APAP experimental group had hepatocyte degeneration, necrosis, and increased inflammatory cell infiltration, which was mostly evident in mutant mice. Simultaneously, the F4/80 immunohistochemical staining results showed that brown granules were visible in the liver tissue of APAP experimental group mice, and its expression levels were significantly enhanced compared to the blank control group. Conclusion: APAP-induced liver function abnormalities were associated with the ALDH2 gene polymorphism. The liver injury symptoms were increased in ALDH2 mutant mice following APAP modeling, and the ALDH2 gene defect may alleviate, to some extent, APAP-induced liver function abnormalities.


Assuntos
Aldeído Oxirredutases , Doença Hepática Crônica Induzida por Substâncias e Drogas , Doença Hepática Induzida por Substâncias e Drogas , Animais , Camundongos , Acetaminofen/efeitos adversos , Acetaminofen/metabolismo , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Crônica Induzida por Substâncias e Drogas/patologia , Fígado/patologia , Camundongos Knockout , Doença Hepática Induzida por Substâncias e Drogas/patologia , Alanina Transaminase
4.
J Cell Mol Med ; 28(8): e18196, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38534093

RESUMO

Liver cirrhosis is a silent disease in humans and is experimentally induced by many drugs and toxins as thioacetamide (TAA) in particular, which is the typical model for experimental induction of hepatic fibrosis. Thus, the objective of the present study was to elucidate the possible protective effects of lactéol® forte (LF) and quercetin dihydrate (QD) against TAA-induced hepatic damage in male albino rats. Induction of hepatotoxicity was performed by TAA injection (200 mg/kg I/P, twice/ week) in rats. LF (1 × 109 CFU/rat 5 times/week) and QD (50 mg/kg 5 times/week) treated groups were administered concurrently with TAA injection (200 mg/kg I/P, twice/ week). The experimental treatments were conducted for 12 weeks. Hepatotoxicity was evaluated biochemically by measuring alanine aminotransferase (ALT), aspartate aminotransferase (AST) and gamma-glutamyl transferase (GGT) in the serum and histopathologically with the scoring of histopathological changes besides histochemical assessment of collagen by Masson's trichrome and immunohistochemical analysis for α-smooth muscle actin (α-SMA), Ki67 and caspase-3 expression in liver sections. Our results indicated that LF and QD attenuated some biochemical changes and histochemical markers in TAA-mediated hepatotoxicity in rats by amelioration of biochemical markers and collagen, α-SMA, Ki67 and caspase3 Immunoexpression. Additionally, LF and QD supplementation downregulated the proliferative, necrotic, fibroblastic changes, eosinophilic intranuclear inclusions, hyaline globules and Mallory-like bodies that were detected histopathologically in the TAA group. In conclusion, LF showed better hepatic protection than QD against TAA-induced hepatotoxicity in rats by inhibiting inflammatory reactions with the improvement of some serum hepatic transaminases, histopathological picture and immunohistochemical markers.


Assuntos
Carbonato de Cálcio , Doença Hepática Induzida por Substâncias e Drogas , Lactose , Quercetina , Humanos , Ratos , Masculino , Animais , Quercetina/farmacologia , Tioacetamida/toxicidade , Antígeno Ki-67/metabolismo , Cirrose Hepática/metabolismo , Fígado/metabolismo , Flavonoides/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Colágeno/metabolismo , Estresse Oxidativo , Combinação de Medicamentos
5.
Arch Toxicol ; 98(5): 1533-1542, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38466352

RESUMO

Acetaminophen (APAP) is known to cause a breach of the blood-bile barrier in mice that, via a mechanism called futile bile acid (BA) cycling, increases BA concentrations in hepatocytes above cytotoxic thresholds. Here, we compared this mechanism in mice and rats, because both species differ massively in their susceptibility to APAP and compared the results to available human data. Dose and time-dependent APAP experiments were performed in male C57BL6/N mice and Wistar rats. The time course of BA concentrations in liver tissue and in blood was analyzed by MALDI-MSI and LC-MS/MS. APAP and its derivatives were measured in the blood by LC-MS. APAP-induced liver damage was analyzed by histopathology, immunohistochemistry, and by clinical chemistry. In mice, a transient increase of BA in blood and in peri-central hepatocytes preceded hepatocyte death. The BA increase coincided with oxidative stress in liver tissue and a compromised morphology of bile canaliculi and immunohistochemically visualized tight junction proteins. Rats showed a reduced metabolic activation of APAP compared to mice. However, even at very high doses that caused cell death of hepatocytes, no increase of BA concentrations was observed neither in liver tissue nor in the blood. Correspondingly, no oxidative stress was detectable, and the morphology of bile canaliculi and tight junction proteins remained unaltered. In conclusion, different mechanisms cause cell death in rats and mice, whereby oxidative stress and a breach of the blood-bile barrier are seen only in mice. Since transient cholestasis also occurs in human patients with APAP overdose, mice are a clinically relevant species to study APAP hepatotoxicity but not rats.


Assuntos
Acetaminofen , Doença Hepática Induzida por Substâncias e Drogas , Camundongos , Ratos , Humanos , Masculino , Animais , Acetaminofen/toxicidade , Acetaminofen/metabolismo , Bile/metabolismo , Cromatografia Líquida , Doença Hepática Induzida por Substâncias e Drogas/patologia , Ratos Wistar , Espectrometria de Massas em Tandem , Fígado/metabolismo , Hepatócitos/metabolismo , Camundongos Endogâmicos C57BL , Proteínas de Junções Íntimas/metabolismo
6.
Drug Res (Stuttg) ; 74(4): 156-163, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458224

RESUMO

Diosgenin is a sapogenin with antidiabetic, antioxidant, and anti-inflammatory properties. The current study investigated whether diosgenin could ameliorate carbon tetrachloride (CCL4)-induced liver injury. To cause liver injury, CCL4 was injected intraperitoneally twice a week for 8 weeks. Daily oral administration of diosgenin at doses of 20, 40, and 80 mg/kg was started one day before CCL4 injection and continued for 8 weeks. Finally, serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and also albumin were assessed. Catalase and superoxide dismutase (SOD) activities in addition to glutathione (GSH) and malondialdehyde (MDA) levels were also quantified in the liver homogenate and routine histological evaluation was also conducted. Elevated serum levels of liver enzymes and decreased serum level of albumin caused by CCL4 were significantly restored following diosgenin administration at doses of 40 and 80 mg/kg. Long-term administration of CCL4 increased inflammatory and apoptotic factors such as IL-1ß, caspase 3, TNF-α, and IL-6 and decreased SOD and catalase activities as well as GSH level in liver homogenates; while MDA level was increased. Treatment with diosgenin increased SOD and catalase activities and GSH levels in the liver of injured animals. In addition, liver MDA, IL-1ß, caspase 3, TNF-α, and IL-6 level or activity decreased by diosgenin treatment. Additionally, diosgenin aptly prevented aberrant liver histological changes. According to obtained results, diosgenin can dose-dependently diminish CCl4-induced liver functional deficits and histological changes in a dose-dependent manner, possibly due to its antioxidant and anti-inflammation properties, and its beneficial effect is comparable to known hepatoprotective agent silymarin.


Assuntos
Antioxidantes , Doença Hepática Induzida por Substâncias e Drogas , Camundongos , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Tetracloreto de Carbono/toxicidade , Catalase , Caspase 3 , Fator de Necrose Tumoral alfa , Interleucina-6 , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/patologia , Fígado , Glutationa , Anti-Inflamatórios/farmacologia , Superóxido Dismutase , Albuminas/farmacologia , Alanina Transaminase
7.
Math Biosci Eng ; 21(1): 237-252, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38303421

RESUMO

In this work, we propose a mathematical model that describes liver evolution and concentrations of alanine aminotransferase and aspartate aminotransferase in a group of rats damaged with carbon tetrachloride. Carbon tetrachloride was employed to induce cirrhosis. A second groups damaged with carbon tetrachloride was exposed simultaneously a plant extract as hepatoprotective agent. The model reproduces the data obtained in the experiment reported in [Rev. Cub. Plant. Med. 22(1), 2017], and predicts that using the plants extract helps to get a better natural recovery after the treatment. Computer simulations show that the extract reduces the damage velocity but does not avoid it entirely. The present paper is the first report in the literature in which a mathematical model reliably predicts the protective effect of a plant extract mixture in rats with cirrhosis disease. The results reported in this manuscript could be used in the future to help in fighting cirrhotic conditions in humans, though more experimental and mathematical work is required in that case.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Extratos Vegetais , Humanos , Ratos , Animais , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Tetracloreto de Carbono/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/patologia , Fígado/patologia , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/patologia , Modelos Teóricos
8.
Chem Pharm Bull (Tokyo) ; 72(3): 280-285, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38325836

RESUMO

This study investigated the hepatoprotective effects of Juncus effusus (J. effusus) and Carbonized J. effusus against liver injury caused by D-galactosamine (D-GalN) in mice. J. effusus and Carbonized J. effusus were administered by gavage once daily starting seven days before the D-GalN treatment. The results of the study indicated that J. effusus and Carbonized J. effusus suppressed the D-GalN-induced generation of serum alanine transaminase (ALT), aspartate aminotransferase (AST), hepatic malondialdehyde (MDA) and tumor necrosis factor-alpha (TNF-α) was observed. The values of superoxide dismutase (SOD) exhibited an increase. In addition, J. effusus and Carbonized J. effusus promoted the protein expression of nuclear factor erythroid 2-related factor 2 (Nrf2), NADPH quinone oxidoreductase-1 (NQO-1), heme oxygenase-1 (HO-1) as well as the mRNA expression of Nrf2, HO-1, NQO-1 and Glutamate cysteine ligase catalytic subunit (GCLC). The compressed Carbonized J. effusus demonstrated the optimum impact. These results suggest that J. effusus and Carbonized J. effusus protect against D-GalN-induced acute liver injury through the activation of the Nrf2 pathway.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Galactosamina , Extratos Vegetais , Animais , Camundongos , Alanina Transaminase/metabolismo , Alanina Transaminase/farmacologia , Antioxidantes/farmacologia , Aspartato Aminotransferases/metabolismo , Aspartato Aminotransferases/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Galactosamina/toxicidade , Galactosamina/metabolismo , Lipopolissacarídeos/farmacologia , Fígado , Fator 2 Relacionado a NF-E2/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Extratos Vegetais/química , Extratos Vegetais/farmacologia
9.
Zhongguo Zhong Yao Za Zhi ; 49(2): 443-452, 2024 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-38403320

RESUMO

Chinese patent medicine preparations containing Epimedii Folium and Psoraleae Fructus have been associated with the occurrence of idiosyncratic drug-induced liver injury(IDILI). However, the specific toxic biomarkers and mechanisms underlying these effects remain unclear. This study aimed to comprehensively assess the impact of bavachin and epimedin B, two principal consti-tuents found in Psoraleae Fructus and Epimedii Folium, on an IDILI model induced by tumor necrosis factor-α(TNF-α) treatment, both in vitro and in vivo. To evaluate the extent of liver injury, various parameters were assessed. Lactate dehydrogenase(LDH) release in the cell culture supernatant, as well as the levels of alanine aminotransferase(ALT) and aspartate transaminase(AST) in mouse plasma were measured. Additionally, histological analysis employing hematoxylin-eosin staining was performed to observe liver tissue changes indicative of the severity of liver injury. Furthermore, a pseudo-targeted metabolomics approach was employed, followed by multivariate analysis, to identify differential metabolites. These identified metabolites were subsequently subjected to Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis. The results showed that at the cellular level, after 2 hours of TNF-α stimulation, bavachin significantly increased the release of LDH in HepG2 cells compared to the normal group and the group treated alone; after the combination of bavachin and epimedin B, the release of LDH further significantly increased on the original basis. Similarly, although the individual or combination treatments of bavachin and epimedin B did not induce liver injury in normal mice, the combination of both drugs induced marked liver injury in TNF-α treated mice, leading to a significant elevation in plasma AST and ALT levels and substantial infiltration of inflammatory immune cells in the liver tissue. Pseudo-targeted metabolomics analysis identified seven common differential metabolites. Among these, D-glucosamine-6-phosphate, N1-methyl-2-pyridone-5-carboxamide, 17beta-nitro-5a-androstane, irisolidone-7-O-glucuronide, and N-(1-deoxy-1-fructosyl) valine emerged as potential biomarkers, with an area under the curve(AUC) exceeding 0.9. Furthermore, our results suggest that the metabolism of nicotinic acid and nicotinamide, as well as the linoleic acid metabolic pathway, may play pivotal roles in bavachin and epimedin B-induced IDILI. In conclusion, within an immune-stressed environment mediated by TNF-α, bavachin and epimedin B appear to induce IDILI through disruptions in metabolic processes.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Flavonoides , Fator de Necrose Tumoral alfa , Camundongos , Animais , Fator de Necrose Tumoral alfa/metabolismo , Fígado , Biomarcadores/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/patologia
10.
Toxicol Ind Health ; 40(4): 206-219, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38358440

RESUMO

Co-exposure to noise and nanomaterials, such as silver nanoparticles (Silver-NPs), is a common occurrence in today's industries. This study aimed to investigate the effects of exposure to noise and the administration of silver-NPs on the liver tissue of rats. Thirty-six adult male albino Wistar rats were randomly divided into six groups: a control group (administered saline intraperitoneally), two groups administered different doses of Silver-NPs (50 mg/kg and 100 mg/kg, 5 days a week for 28 days), two groups exposed to noise in addition to Silver-NPs (at the same doses as mentioned before), and a group exposed only to noise (104 dB, 6 hours a day, 5 days a week for 4 weeks). Blood samples were taken to assess hepatic-functional alterations, such as serum ALP, ALT, and AST levels. Additionally, biochemical parameters (MDA, GPX, and CAT) and the silver concentration in the liver were measured. Histopathological analysis, mRNA expression (P53 and NF-κB), protein expression (CYP450), and liver weight changes in rats were also documented. The study found that the administration of Silver-NPs and exposure to noise resulted in elevated levels of ALP, ALT, AST, and MDA (p < .01). Conversely, GPX and CAT levels decreased in all groups compared with the control group (p < .0001). There was a significant increase (p < .05) in liver weight and silver concentration in the liver tissues of groups administered Silver-NPs (50 mg/kg) plus noise exposure, Silver-NPs (100 mg/kg), and Silver-NPs (100 mg/kg) plus noise exposure, respectively. The expression rate of P53, NF-κB, and cytochromes P450 (CYPs-450) was increased in the experimental groups (p < .05). These findings were further confirmed by histopathological changes. In conclusion, this study demonstrated that exposure to noise and the administration of Silver-NPs exacerbated liver damage by increasing protein and gene expression, causing hepatic necrosis, altering biochemical parameters, and affecting liver weight.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Nanopartículas Metálicas , Nanopartículas , Ratos , Masculino , Animais , NF-kappa B/genética , NF-kappa B/metabolismo , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/farmacologia , Fígado , Ratos Wistar , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Transdução de Sinais , Estresse Oxidativo
11.
Chem Biol Drug Des ; 103(1): e14430, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38230777

RESUMO

N-acetylcysteine (NAC) is a recommended drug for treating acetaminophen (APAP) intoxication. Due to NAC's low bioavailability, this study aimed to use polyrhodanine (PR) nanoparticles (NPs) as a drug carrier to improve the effectiveness of NAC. After preparation and characterization of NAC loaded on PR, 30 rats were randomly divided into five groups of six. The first group (control) received normal saline. Groups 2-5 were treated with normal saline, PR, NAC, and NAC loaded on PR, respectively. The treatments were started 4 h after oral administration of APAP (2000 mg kg-1 ). After 48 h, the animals were anesthetized, and liver function indices and oxidative stress were measured in tissue and serum samples. The APAP administration can increase aminotransferases and alkaline phosphatase enzymes in serum, decreasing the total antioxidant capacity and thiol groups and increasing lipid peroxidation in liver tissue. Administration of PR-NAC could effectively improve the level of serum-hepatic enzymes, total antioxidant capacity and thiol groups, lipid peroxidation, and pathological changes in liver tissue in animals poisoned with APAP. PR-NAC has a significant therapeutic effect on preventing acute hepatotoxicity caused by APAP, and its effectiveness can be associated with an improvement in the oxidant/antioxidant balance of liver tissue.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Nanopartículas , Ratos , Animais , Acetilcisteína/farmacologia , Acetilcisteína/uso terapêutico , Acetaminofen/toxicidade , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Solução Salina/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/patologia , Fígado , Compostos de Sulfidrila
12.
Sci Rep ; 14(1): 1434, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38228668

RESUMO

Early and sensitive biomarkers of liver dysfunction and drug-induced liver injury (DILI) are still needed, both for patient care and drug development. We developed the Serum Enhanced Binding (SEB) test to reveal post-transcriptional modifications (PTMs) of human serum albumin resulting from hepatocyte dysfunctions and further evaluated its performance in an animal model. The SEB test consists in spiking serum ex-vivo with ligands having specific binding sites related to the most relevant albumin PTMs and measuring their unbound fraction. To explore the hypothesis that albumin PTMs occur early during liver injury and can also be detected by the SEB test, we induced hepatotoxicity in male albino Wistar rats by administering high daily doses of ethanol and CCl4 over several days. Blood was collected for characterization and quantification of albumin isoforms by high-resolution mass spectrometry, for classical biochemical analyses as well as to apply the SEB test. In the exposed rats, the appearance of albumin isoforms paralleled the positivity of the SEB test ligands and histological injuries. These were observed as early as D3 in the Ethanol and CCl4 groups, whereas the classical liver tests (ALT, AST, PAL) significantly increased only at D7. The behavior of several ligands was supported by structural and molecular simulation analysis. The SEB test and albumin isoforms revealed hepatocyte damage early, before the current biochemical biomarkers. The SEB test should be easier to implement in the clinics than albumin isoform profiling.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Fígado , Ratos , Masculino , Humanos , Animais , Fígado/metabolismo , Ratos Wistar , Doença Hepática Induzida por Substâncias e Drogas/patologia , Albuminas/metabolismo , Etanol/metabolismo , Biomarcadores/metabolismo , Isoformas de Proteínas/metabolismo , Tetracloreto de Carbono/toxicidade
13.
Pestic Biochem Physiol ; 198: 105724, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38225079

RESUMO

Chlorpyrifos(CPF) is a well-known hepatotoxic agent that has side effects on several organs. On the contrary, hepatic macrophages are crucial in maintaining liver tissue integrity. The main objective of this study was to evaluate the effects and possible mechanisms of niosomal hesperidin (Nio + Hesp), a flavanone glycoside found in citrus fruits, on M1-M2 liver macrophage polarization and inflammatory cells in the brain, liver, and ovarian tissues. Forty C57 mice were divided into CPF(3 mg/kg), Sham(Dimethyl sulfoxide 40 µL/kg), CPF + Hesp(100 mg/kg), and CPF + Nio + Hesp (100 mg/kg) groups. The activity of sera superoxide dismutase (SOD) and malondialdehyde (MDA), brain, liver, and ovary tissues changes, and M1-M2 liver macrophage polarization were evaluated by examining the expression of CD163 and CD68 genes. Hepatic lesions consisting of sporadic foci of coagulation necrosis, inflammatory cell reaction, and regenerative fibrosis were seen following CPF injection, reflected by significant overexpression of CD163 and CD68 genes. In comparison, Nio + Hesp declined the amount of cell apoptosis in the liver and downregulated CD163 and CD68 gene expression. Both Nio + Hesp and Hesp alleviated CPF-induced hepatotoxicity, however, Nio + Hesp was superior to hesperidin in the downregulation of the CD163 and CD68 gene expression. Even though a significant difference between hesperidin and Nio + Hesp was observed in the number of Graafian follicles, corpus luteum, and peri-antral follicles, no substantial difference was observed in primary follicles. The ameliorative effects of Hesp and Nio + Hesp may be at least in part due to their antioxidant and anti-inflammatory properties. These findings showed that both M1- and M2-macrophages contributed to the development of hepatic lesions induced by CPF and provided information about macrophage activation, indicating the importance of analysis of macrophage phenotypes for hepatotoxicity based on M1/M2-polarization which can be downregulated by niosomal nesperidin.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Clorpirifos , Hesperidina , Camundongos , Animais , Clorpirifos/toxicidade , Hesperidina/farmacologia , Ativação de Macrófagos , Inflamação , Macrófagos , Doença Hepática Induzida por Substâncias e Drogas/patologia
14.
Int J Immunopathol Pharmacol ; 38: 3946320241227099, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38207276

RESUMO

INTRODUCTION: The clinical use of 5-fluorouracil (5-FU), a routinely used chemotherapy medication, has a deleterious impact on the liver. Therefore, it is necessary to find a less harmful alternative to minimize liver damage. This study was designed to see how 5-fluorouracil nanogel influenced 5-FU-induced liver damage in rats. METHODS: To induce liver damage, male albino rats were injected intraperitoneally with 5-FU (12.5 mg/kg) three doses/week for 1 month. The histopathological examination together with measuring the activities of serum alanine and aspartate aminotransferase enzymes (ALT and AST) were used to evaluate the severity of liver damage besides, hepatic oxidative stress and antioxidant markers were also measured. The hepatic gene expression of heme oxygenase-1 (HO-1), nuclear factor erythroid 2-related factor 2 (Nrf2) and its inhibitor Kelch-like ECH-associated protein-1(Keap-1) in addition to hepatic inflammatory mediators including tumor necrosis factor-α (TNF- α) and interleukins (IL-1ß, IL-6) were detected. RESULTS: 5-Fu nanogel effectively attenuated 5-FU-induced liver injury by improving the hepatic structure and function (ALT and AST) besides the suppression of the hepatic inflammatory mediators (TNF- α, IL-1ß and IL-6). Additionally, 5-FU nanogel alleviated the impaired redox status and restored the antioxidant system via maintaining the cellular homeostasis Keap-1/Nrf2/HO-1 pathway. CONCLUSION: Consequently, 5-Fu nanogel exhibited lower liver toxicity compared to 5-FU, likely due to the alleviation of hepatic inflammation and the regulation of the cellular redox pathway.


Assuntos
Antioxidantes , Doença Hepática Induzida por Substâncias e Drogas , Polietilenoglicóis , Polietilenoimina , Ratos , Masculino , Animais , Antioxidantes/metabolismo , Fluoruracila/toxicidade , Fator 2 Relacionado a NF-E2 , Interleucina-6/metabolismo , Nanogéis , Fígado , Estresse Oxidativo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Mediadores da Inflamação/metabolismo
15.
Histol Histopathol ; 39(1): 79-90, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37017203

RESUMO

BACKGROUND AND AIMS: Liver biopsy can provide critical information in patients with drug-induced liver injury (DILI). Our study aimed to compare the histopathological features of DILI at different time points from the onset to liver biopsy. METHODS: We conducted a single-centre retrospective observational study. The clinical and follow-up data were extracted, and the pathological slides were reviewed. RESULTS: 129 patients were included. The median age was 52 and 75% were women. They were divided into <1 month, 1-3 months, and >3 months groups according to the durations from onset of the disorder to liver biopsy. The aminotransferase, alkaline phosphatase, and bilirubin levels showed no significant differences at onset but significantly decreased with time among the three groups (all p<0.05) at the time of liver biopsy. Histological injury patterns were significantly different among the three groups (p<0.01). Hepatocellular, canalicular, and cholestasis of Kupffer cells were significantly less frequent in the >3 months group (p<0.01). For patients taking herbs, bridging necrosis and cholestatic injury were significantly more frequent in the <1 month group (p<0.01). Furthermore, ductopenia, cholate stasis, and foam-like cells were equally distributed in the three groups but were significantly associated with poor prognosis. CONCLUSIONS: Biopsy time significantly affects liver pathology: the earlier, the more acute cholestatic-hepatitic pattern, the later, the more chronic injury patterns. The prognostic features (ductopenia, cholate stasis, and foam-like cells) occurred equally in all three groups. Our study provides valuable information for liver pathologists aiding in their better interpretation of the liver biopsy from patients with DILI.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Colestase , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Fígado/patologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Colestase/patologia , Biópsia , Colatos/efeitos adversos
16.
Ultrastruct Pathol ; 48(1): 16-28, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37997442

RESUMO

Liver disease accounts for approximately 2 million deaths er year worldwide. Liver fibrisis results from chronic injury to the liver. If not effectively treated in time, liver fibrosis may transform into liver cirrhosis. MVs are recognized as potential biomarkers and important theraputic tools for a wide sectrum of diseases. Medical ozone has the ability to protect the body against pathological conditions caused by oxidative stress. The influence of ozone and MVs on CCL4 induced liver fibrosis was investigated in this study. Forty-eight adult male albino rats were divided into four equal groups. I control, II CCL4 group, III ozone and IV microvesicles groups. Liver fibrosis was induced in group II, III & IV using 12 SC injections (0.5 ml/kg body weight) of CCL4 dissolved in olive oil twice ber week for weeks. Blood samples were obtained to estimate serum ALT & AST. Liver tissues were processed for measurment of GSH & SOD, light and electron microscopic examination. H&E staine sections og group II showed dilated congested sinusoids and centralveins, mononuclear infiltrations, vacuolations and dark nuclei. Ultrastructurally, group II revealed irregular heterochromatic nuclei of hepatocytes, small scanty mitochondria & vacuolations. Morphometric & statistical analyses were performed. Group III showed some improvement, however, group IV showed more imrovement. The results indicates that MVs caused marked improvement than ozone against CCL4 induced liver damage via antioxidant & antiinflammatory properties.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Doença Hepática Induzida por Substâncias e Drogas , Células-Tronco Mesenquimais , Ratos , Animais , Masculino , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Crônica Induzida por Substâncias e Drogas/patologia , Fígado , Antioxidantes/farmacologia , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Estresse Oxidativo , Doença Hepática Induzida por Substâncias e Drogas/patologia
17.
Biotech Histochem ; 99(1): 33-43, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38018995

RESUMO

We investigated possible protective effects of chlorogenic acid (CGA) against cyclophosphamide (CP) induced hepatic injury in mice. We measured aminotransferase alanine transaminase (ALT) and aspartate transaminase (AST) levels in the serum. We assayed catalase (CAT), superoxide dismutase (SOD), reduced glutathione (GSH), glutathione peroxidase (GSH-Px) and malondialdehyde (MDA) in hepatic tissue. We assessed expression of nuclear transcription factor 2 (Nrf2) and Kelch sample related protein-1 (keap1) proteins in hepatic tissues using immunohistochemistry. The relative mRNA expression levels of heme oxygenase-1 (HO-1), NADH quinone oxidoreductase 1 (NQO1), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were determined using quantitative real-time polymerase chain reaction (qRT-PCR). Hematoxylin & eosin staining was used to assess liver histopathology. We found that administration of CGA prior to induction of injury by CP decreased serum ALT, AST and MDA expressions in hepatic tissue, while CAT, SOD, GSH and GSH-Px concentrations were increased. We found that hepatocytes of animals administered CGA gradually returned to normal morphology. CGA increased the protein expression of Nrf2 in murine hepatic tissue. Administration of CGA up-regulated mRNA expression levels of HO-1, NQO1, TNF-α and IL-6 in hepatic tissue. CGA exhibited a marked protective effect on CP induced liver injury in mice.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Doença Hepática Induzida por Substâncias e Drogas , Camundongos , Animais , Ácido Clorogênico/farmacologia , Ácido Clorogênico/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6 , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Crônica Induzida por Substâncias e Drogas/patologia , Fígado , Alanina Transaminase/metabolismo , Superóxido Dismutase/metabolismo , Ciclofosfamida/toxicidade , RNA Mensageiro/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/patologia , Estresse Oxidativo
18.
Aliment Pharmacol Ther ; 59(2): 201-216, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37877759

RESUMO

BACKGROUND: Causality assessment of suspected drug-induced liver injury (DILI) during metabolic dysfunction-associated steatohepatitis (MASH) clinical trials can be challenging, and liver biopsies are not routinely performed as part of this evaluation. While the field is moving away from liver biopsy as a diagnostic and prognostic tool, information not identified by non-invasive testing may be provided on histology. AIM: To address the appropriate utilisation of liver biopsy as part of DILI causality assessment in this setting. METHODS: From 2020 to 2022, the Liver Forum convened a series of webinars on issues pertaining to liver biopsy during MASH trials. The Histology Working Group was formed to generate a series of consensus documents addressing these challenges. This manuscript focuses on liver biopsy as part of DILI causality assessment. RESULTS: Expert opinion, guidance and recommendations on the role of liver biopsy as part of causality assessment of suspected DILI occurring during clinical trials for a drug(s) being developed for MASH are provided. Lessons learned from prior MASH programs are reviewed and gaps identified. CONCLUSIONS: Although there are no pathognomonic features, histologic evaluation of suspected DILI during MASH clinical trials may alter patient management, define the pattern and severity of injury, detect findings that favour a diagnosis of DILI versus MASH progression, identify prognostic features, characterise the clinicopathological phenotype of DILI, and/or define lesions that influence decisions about trial discontinuation and further development of the drug.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Fígado Gorduroso , Humanos , Consenso , Fígado/patologia , Doença Hepática Induzida por Substâncias e Drogas/diagnóstico , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Biópsia
19.
Sci Total Environ ; 912: 169036, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38061639

RESUMO

Ammonia (NH3) is an irritating gas and atmospheric pollutant that endangers the health of humans and animals by stimulating respiratory tract's mucosa and causing liver damage. However, physiological role of ammonia gas in hepatotoxicity remains unclear. To investigate the hepatotoxic effects of inhaled ammonia gas, experiments were conducted using mouse model exposed to 100 ppm of ammonia gas for 21 days. The exposed mice exhibited signs of depression, emaciation, and reduced growth. This study revealed that inhalation of ammonia led to significant decrease in water (P < 0.0001) and food intake (P < 0.05), resulting in slower growth. Histopathological analysis showed that ammonia stress alters the microstructure of the liver by enlarging the gap between hepatic lobule and fibrosis. Moreover, ammonia-induced stress significantly reduces the expression of the anti-apoptotic protein BCl-2 (P < 0.001), while elevates the mRNA expression of the pro-apoptotic gene Bax (P < 0.001). Furthermore, ammonia inhalation significantly increases the protein expression of LC-3bII (P < 0.05) and the mRNA expression of autophagy-related gene 5 (ATG5) (P < 0.05) and p62 (P < 0.05) while remarkably decreases the mRNA expression of mammalian target of rapamycin (m-TOR) (P < 0.05). In conclusion, this study demonstrates that inhalation of ammonia gas causes liver damage and suggests autophagy happening via m-TOR/p62/LC-3bII and pro-apoptosis effect mediated by Bax/BCl-2 in the liver damage caused by ammonia inhalation. Our study provides a new perspective on ammonia-induced hepatotoxicity.


Assuntos
Amônia , Doença Hepática Induzida por Substâncias e Drogas , Humanos , Camundongos , Animais , Proteína X Associada a bcl-2 , Amônia/toxicidade , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/farmacologia , Apoptose , Hepatócitos , RNA Mensageiro , Doença Hepática Induzida por Substâncias e Drogas/patologia , Autofagia , Mamíferos/metabolismo , Proteína 5 Relacionada à Autofagia/farmacologia
20.
Chem Biol Drug Des ; 103(1): e14369, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37817304

RESUMO

Acetaminophen (APAP) in high doses causes acute liver injury and acute liver failure. Ethyl gallate (EG) is a natural polyphenol, possessing antioxidant, anti-inflammatory, and anti-microbial properties. Therefore, in this study, we evaluated the protective role of EG against APAP-induced acute liver injury in mice. Acute liver injury was induced by a single dose of APAP (400 mg/kg., i.p.). In separate groups, EG (10 mg/kg), EG (20 mg/kg), and N-acetylcysteine (NAC; 1200 mg/kg., i.p.) were administered concurrently with APAP. The mice were sacrificed after 24 h of treatment. Liver marker enzymes of hepatotoxicity, antioxidant markers, inflammatory markers, and histopathological studies were done. APAP administration caused a significant elevation of marker enzymes of hepatotoxicity and lipid peroxidation. APAP administration also decreased enzymic and nonenzymic antioxidants. Acute APAP intoxication induced nuclear factor κ B, tumor necrosis factor-α, interleukin-1, p65, and p52 and downregulated IκB gene expressions. Our histopathological studies have confirmed the presence of centrilobular necrosis, 24 h after APAP intoxication. All the above abnormalities were significantly inhibited in groups of mice that were concurrently administered with APAP + EG and APAP + NAC. Our in silico analysis further confirms that hydroxyl groups of EG interact with the above inflammatory proteins at the 3,4,5-trihydroxybenzoic acid region. These effects of EG against APAP-induced acute liver injury could be attributed to its antioxidative, free radical scavenging, and anti-inflammatory potentials. Therefore, this study suggests that EG can be an efficient therapeutic approach to protect the liver from APAP intoxication.


Assuntos
Antioxidantes , Doença Hepática Induzida por Substâncias e Drogas , Camundongos , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Acetaminofen/toxicidade , Fígado , Ácido Gálico/metabolismo , Ácido Gálico/farmacologia , Anti-Inflamatórios/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/patologia , Estresse Oxidativo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...